Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.963
1.
Cell Transplant ; 33: 9636897241244943, 2024.
Article En | MEDLINE | ID: mdl-38695366

Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.


Cell Differentiation , Hedgehog Proteins , Mesenchymal Stem Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hedgehog Proteins/metabolism , Humans , Cell Differentiation/physiology , Animals , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
2.
Biomed Pharmacother ; 175: 116706, 2024 May 06.
Article En | MEDLINE | ID: mdl-38713944

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.

3.
Chin Herb Med ; 16(2): 239-247, 2024 Apr.
Article En | MEDLINE | ID: mdl-38706823

Constipation is common in the diseases of the digestive system in clinics. With the change in diet structure and the increase in life pressure, the prevalence rate increases year by year. In traditional Chinese medicine (TCM), the location of the disease of constipation is in the large intestine, which is related to the dysfunction of lung, spleen, liver, kidney and other viscera. Its pathogenesis is conductive dysfunction of large intestine. Based on the theory, Shouhui Tongbian Capsule (SHTB) is composed of eight traditional Chinese medicines, including Polygoni multiflori Radix (Heshouwu in Chinese), Aloe (Luhui in Chinese), Cassiae Semen (Juemingzi in Chinese), Ginseng Radix et Rhizoma (Renshen in Chinese), Lycii Fructus (Gouqizi in Chinese), Asini Corii Colla (Ejiao in Chinese), Aurantii Fructus Immaturus (Zhishi in Chinese), and Atractylodis Macrocephalae Rhizoma (Baizhu in Chinese), which could help to release excessive turbid, and nourishing yin and supplementing qi in the treatment. This study has been carried out to review the latest advances of SHTB in the treatment of constipation. The results showed that significant effect of SHTB was found in the treatment of constipation, such as functional constipation, and constipation associated with tumor chemotherapy, colitis, type 2 diabetes and chronic cardiac failure. Besides, obvious adverse reactions were not observed. SHTB could effectively treat five types of constipation, provide direction for the future exploration of SHTB in the treatment of other types of constipation.

4.
Biomed Pharmacother ; 175: 116421, 2024 May 07.
Article En | MEDLINE | ID: mdl-38719708

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.

5.
Mater Horiz ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747363

Silicon nanocrystals (SiNCs) have attracted considerable attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, little attention has been paid to fluorescence anti-counterfeiting applications based on lipophilic silicon nanocrystals. Moreover, it is also a challenge to fabricate aging-resistant anti-counterfeiting coatings based on silicon nanocrystals. Herein, this paper presents a demonstration of aging-resistant fluorescent anti-counterfeiting coatings based on red fluorescent silicon nanocrystals. In this work, lipophilic silicon nanocrystals (De-SiNCs) with red fluorescence were prepared first by thermal hydrosilylation between hydrogen-terminated silicon nanocrystals (H-SiNCs) and 1-decene. Subsequently, a new SiNCs/PDMS coating (De-SiNCs/DV) was fabricated by dispersing De-SiNCs into reinforcing PDMS composites with vinyl-capped silicone resin. Interestingly, the De-SiNCs/DV composites exhibit superior transparency (up to 85%) in the visible light range, outstanding fluorescence stabilities with an average lifetime of 20.59 µs under various conditions including acidic/alkaline environments, different organic solvents, high-humidity environments and UV irradiation. Meanwhile, the encapsulation of De-SiNCs is beneficial to enhancing the mechanical properties and thermal stability of De-SiNCs/DV composites. Additionally, the De-SiNCs/DV coating exhibits an excellent anti-counterfeiting effect on cotton fabrics when used as an ink in screen-printing. These findings pave the way for developing innovative flexible multifunctional anti-counterfeiting coatings in the future.

6.
Nat Commun ; 15(1): 3820, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744833

Lead (Pb2+) toxification is a concerning, unaddressed global public health crisis that leads to 1 million deaths annually. Yet, public policies to address this issue have fallen short. This work harnesses the unique abilities of crown ethers, which selectively bind to specific ions. This study demonstrates the synergistic integration of highly-scalable silicon photonics, with crown ether amine conjugation via Fischer esterification in an environmentally-friendly fashion. This realizes an integrated photonic platform that enables the in-operando, highly-selective and quantitative detection of various ions. The development dispels the existing notion that Fischer esterification is restricted to organic compounds, facilitating the subsequent amine conjugation for various crown ethers. The presented platform is specifically engineered for selective Pb2+ detection, demonstrating a large dynamic detection range, and applicability to field samples. The compatibility of this platform with cost-effective manufacturing indicates the potential for pervasive implementation of the integrated photonic sensor technology to safeguard against societal Pb2+ poisoning.

7.
J Mol Med (Berl) ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727748

Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.

8.
Medicine (Baltimore) ; 103(18): e38038, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701277

The present study aimed to establish an effective prognostic nomogram model based on the Naples prognostic score (NPS) for resectable thoracic esophageal squamous cell carcinoma (ESCC). A total of 277 patients with ESCC, who underwent standard curative esophagectomy and designated as study cohort, were retrospectively analyzed. The patients were divided into different groups, including NPS 0, NPS 1, NPS 2, and NPS 3 or 4 groups, for further analysis, and the results were validated in an external cohort of 122 ESCC patients, who underwent surgery at another cancer center. In our multivariate analysis of the study cohort showed that the tumor-node-metastasis (TNM) stage, systemic inflammation score, and NPS were the independent prognostic factors for the overall survival (OS) and progression-free survival (PFS) durations. In addition, the differential grade was also an independent prognostic factor for the OS in the patients with ESCC after surgery (all P < .05). The area under the curve of receiver operator characteristics for the PFS and OS prediction with systemic inflammation score and NPS were 0.735 (95% confidence interval [CI] 0.676-0.795, P < .001) and 0.835 (95% CI 0.786-0.884, P < .001), and 0.734 (95% CI 0.675-0.793, P < .001) and 0.851 (95% CI 0.805-0.896, P < .001), respectively. The above independent predictors for OS or PFS were all selected in the nomogram model. The concordance indices (C-indices) of the nomogram models for predicting OS and PFS were 0.718 (95% CI 0.681-0.755) and 0.669 (95% CI 0.633-0.705), respectively, which were higher than that of the 7th edition of American Joint Committee on Cancer TNM staging system [C-index 0.598 (95% CI 0.558-0.638) for OS and 0.586 (95% CI 0.546-0.626) for PFS]. The calibration curves for predicting the 5-year OS or PFS showed a good agreement between the prediction by nomogram and actual observation. In the external validation cohort, the nomogram discrimination for OS was better than that of the 7th edition of TNM staging systems [C-index: 0.697 (95% CI 0.639-0.755) vs 0.644 (95% CI 0.589-0.699)]. The calibration curves showed good consistency in predicting the 5-year survival between the actual observation and nomogram predictions. The decision curve also showed a higher potential of the clinical application of predicting the 5-years OS of the proposed nomogram model as compared to that of the 7th edition of TNM staging systems. The preoperative NPS-based nomogram model had a certain potential role for predicting the prognosis of ESCC patients.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagectomy , Nomograms , Humans , Male , Female , Retrospective Studies , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Esophageal Neoplasms/surgery , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Prognosis , Esophagectomy/methods , Aged , Neoplasm Staging , Adult
9.
Comput Struct Biotechnol J ; 23: 1705-1714, 2024 Dec.
Article En | MEDLINE | ID: mdl-38689719

Camelids produce both conventional tetrameric antibodies (Abs) and dimeric heavy-chain antibodies (HCAbs). Although B cells that generate these two types of Abs exhibit distinct B cell receptors (BCRs), whether these two B cell populations differ in their phenotypes and developmental processes remains unclear. Here, we performed single-cell 5' RNA profiling of peripheral blood mononuclear cell samples from Bactrian camels before and after immunization. We characterized the functional subtypes and differentiation trajectories of circulating B cells in camels, and reconstructed single-cell BCR sequences. We found that in contrast to humans, the proportion of T-bet+ B cells was high among camelid peripheral B cells. Several marker genes of human B cell subtypes, including CD27 and IGHD, were expressed at low levels in the corresponding camel B cell subtypes. Camelid B cells expressing variable genes of HACbs (VHH) were widely present in various functional subtypes and showed highly overlapping differentiation trajectories with B cells expressing variable genes of conventional Abs (VH). After immunization, the transcriptional changes in VHH+ and VH+ B cells were largely consistent. Through structure modeling, we identified a variety of scaffold types among the reconstructed VHH sequences. Our study provides insights into the cellular context of HCAb production in camels and lays the foundation for developing single-B cell-based camelid single-domain Ab screening.

10.
Diabetes Obes Metab ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38699782

AIM: To investigate the effects of adenosine kinase (ADK), a key enzyme in determining intracellular adenosine levels, on ß cells, and their underlying mechanism. METHODS: Genetic animal models and transgenic immortalized cells were applied to study the effect of ADK on islet beta-cell proliferation and function. The beta-cell mass and response to glucose were measured in vivo using mice with beta-cell-specific ADK overexpression, and in vitro using ADK-overexpressed immortalized beta-cell. RESULTS: The expression of ADK in human islets at high abundance, especially in ß cells, was decreased during the process of ß-cell proliferation. Additionally, a transgenic mouse model (ADKtg/tg /Mip-Cre) was generated wherein the mouse Insulin1 gene promoter specifically overexpressed ADK in pancreatic ß cells. The ADKtg/tg /Mip-Cre model exhibited impaired glucose tolerance, decreased fasting plasma insulin, loss of ß-cell mass, and inhibited ß-cell proliferation. Proteomic analysis revealed that ADK overexpression inhibited the expression of several proteins that promote cell proliferation and insulin secretion. Upregulating ADK in the ß-cell line inhibited the expression of ß-cell related regulatory molecules, including FoxO1, Appl1, Pxn, Pdx-1, Creb and Slc16a3. Subsequent in vitro experiments indicated that the inhibition of ß-cell proliferation and the decreased expression of Pdx-1, Creb and Slc16a3 were rescued by DNA methyltransferase 3A (DNMT3A) knockdown in ß cells. CONCLUSION: In this study, we found that the overexpression of ADK decreased the expression of several genes that regulate ß cells, resulting in the inhibition of ß-cell proliferation and dysfunction by upregulating the expression of DNMT3A.

11.
Small ; : e2400673, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700057

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

12.
Risk Manag Healthc Policy ; 17: 1165-1176, 2024.
Article En | MEDLINE | ID: mdl-38737417

Objective: This study aimed to evaluate the impact of twin pregnancies with antiphospholipid antibody (aPL) positivity, a rare and complex clinical condition that remains a huge challenge for management. Methods: This study enrolled twin-pregnant women at our hospital between January 2018 and August 2023. Women with and without aPL positivity were selected using propensity score matching (PSM). Clinical features and pregnancy outcomes were compared between the two groups in the PSM cohort. To analyze the effect of aPL positivity on pregnancy outcomes, multivariate logistic models were used to obtain adjusted odds ratios (aOR) with 95% confidence intervals (CI). Results: Among the 773 women with twin pregnancies, aPL positivity was found in 26 women (3.36%). In the PSM cohort, there were 24 twin-pregnant women with positive aPL, and 48 women without aPL were selected as controls. Twin-pregnant women with aPL positivity had a higher proportion of abortion (8.33% vs 0, P = 0.043), preterm birth < 34 weeks (33.33% vs 8.33%, P = 0.007) and very low birthweight (<1500 g) (20.83% vs 4.17%, P = 0.016) than the control group. In addition, stillbirth of one fetus was observed in one twin-pregnant woman with positive aPL. Multivariate logistic regression analysis revealed that twin pregnancy with aPL positivity was associated with preterm birth < 34 weeks (aOR = 2.76, 95% CI: 0.83-4.70, P = 0.005), very low birthweight (<1500 g) (OR = 2.40, 95% CI: 0.18-4.67, P = 0.034) and small for gestational age (SGA) (aOR = 1.66, 95% CI: 0.22-3.10, P =0.024). Conclusion: Twin pregnancies with aPL positivity were correlated with obstetric complications, including abortion, preterm birth < 34 weeks and very low birthweight (<1500 g). The detection of aPL may be of clinical significance for women with twin pregnancies and should be considered in future studies.

13.
Phys Chem Chem Phys ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739457

In this paper, a new GaSe/ZnS van der Waals heterostructure (vdWH) was constructed and a systematic analysis of the electronic structure, interfacial properties, and transport and photocatalytic capacity of the GaSe/ZnS vdWH was performed by using first-principles calculations. It was found that the heterostructure exhibited excellent photocatalytic performance for water splitting. The direct band gap of the heterostructure calculated using the hybrid HSE06 functional was 2.19 eV, which had a good visible light absorption ability. The electronic structure of the type-II band arrangement effectively reduced the recombination of electron-hole pairs. The heterostructure also showed excellent transport ability, and the carrier mobility of electrons and holes along different directions was greatly improved. Additionally, as the electric field strength increased, the band gap width of the GaSe/ZnS vdWH narrowed and the heterostructure characteristics transitioned from semiconductor to metal properties, which were attributed to the appearance of near-free electronic (NFE) states induced by the strong electric field. Meanwhile, the optical absorption capacity of the heterostructure was greatly improved compared to the ZnS monolayer, reaching 1.44 × 105 cm-1 at an incident photon energy of 8.65 eV. Therefore, the GaSe/ZnS vdWH was proved to be an excellent photocatalytic material for water splitting in the present study.

14.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Article En | MEDLINE | ID: mdl-38593897

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Atorvastatin , Hydrophobic and Hydrophilic Interactions , Lactates , Nanoparticles , Polyethylene Glycols , Atorvastatin/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Micelles , Polyesters/chemistry , Drug Compounding , Molecular Dynamics Simulation
15.
Eur J Pediatr ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38634889

Bronchopulmonary dysplasia (BPD) is the most common serious complication of very preterm infants (VPI) or very low birth weight (VLBW) infants. Studies implicate viral infections in etiopathogenesis. The aim of this study was to summarize the relationship between viral infections and BPD through a systematic review and meta-analysis. We searched PubMed, Embase, the Web of Science Core Collection, and the Cochrane Database on December 19, 2023. We included observational studies that examined the association between viral infections and BPD in preterm infants. We extracted data on study methods, participant characteristics, exposure assessment, and outcome measures. We assessed study risk of bias using the Newcastle-Ottawa Scale (NOS). We included 17 and 15 studies in the qualitative review and meta-analysis, respectively. The meta-analysis showed a significant association between viral infection and BPD diagnosed at 36 weeks postmenstrual age (odds ratio (OR): 2.42, 95% confidence interval: 1.89-3.09, 13 studies, very low certainty of evidence). In a subgroup analysis of specific viruses, cytomegalovirus (CMV) proved to be significantly associated with BPD diagnosed at 36 weeks postmenstrual age (OR: 2.34, 95% confidence interval: 1.80-3.05, 11 studies). We did not find an association between viral infection and BPD diagnosed on the 28th day of life, probably due to the small sample size of the included prospective studies.  Conclusion: Viral infections, especially CMV, are associated with an increased risk of BPD in preterm infants. Methodologically reliable prospective studies with large samples are needed to validate our conclusions, and high-quality randomized controlled studies are needed to explore the effect of prevention or treatment of viral infections on the incidence of BPD. What is Known: • Studies have attempted to identify viral infections and bronchopulmonary dysplasia in preterm infants; however, results have been inconsistent. What is New: • Systematic demonstration that viral infections, particularly cytomegalovirus, are positively associated with bronchopulmonary dysplasia diagnosed in preterm infants at the 36th week of postmenstrual age. • The importance of screening for viral infections in preterm infants, especially cytomegalovirus. More high-quality studies should be produced in the future to investigate the causal relationship between viral infections and bronchopulmonary dysplasia.

16.
World J Orthop ; 15(4): 363-378, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38680671

BACKGROUND: Regular physical activity during childhood and adolescence is beneficial to bone development, as evidenced by the ability to increase bone density and peak bone mass by promoting bone formation. AIM: To investigate the effects of exercise on bone formation in growing mice and to investigate the underlying mechanisms. METHODS: 20 growing mice were randomly divided into two groups: Con group (control group, n = 10) and Ex group (treadmill exercise group, n = 10). Hematoxylin-eosin staining, immunohistochemistry, and micro-CT scanning were used to assess the bone formation-related indexes of the mouse femur. Bioinformatics analysis was used to find potential miRNAs targets of long non-coding RNA H19 (lncRNA H19). RT-qPCR and Western Blot were used to confirm potential miRNA target genes of lncRNA H19 and the role of lncRNA H19 in promoting osteogenic differentiation. RESULTS: Compared with the Con group, the expression of bone morphogenetic protein 2 was also significantly increased. The micro-CT results showed that 8 wk moderate-intensity treadmill exercise significantly increased bone mineral density, bone volume fraction, and the number of trabeculae, and decreased trabecular segregation in the femur of mice. Inhibition of lncRNA H19 significantly upregulated the expression of miR-149 and suppressed the expression of markers of osteogenic differentiation. In addition, knockdown of lncRNA H19 significantly downregulated the expression of autophagy markers, which is consistent with the results of autophagy-related protein changes detected in mouse femurs by immunofluorescence. CONCLUSION: Appropriate treadmill exercise can effectively stimulate bone formation and promote the increase of bone density and bone volume in growing mice, thus enhancing the peak bone mass of mice. The lncRNA H19/miR-149 axis plays an important regulatory role in osteogenic differentiation.

17.
J Inflamm Res ; 17: 2445-2457, 2024.
Article En | MEDLINE | ID: mdl-38681069

Background: As of 30 April 2023, the COVID-19 pandemic has resulted in over 6.9 million deaths worldwide. The virus continues to spread and mutate, leading to continuously evolving pathological and physiological processes. It is imperative to reevaluate predictive factors for identifying the risk of early disease progression. Methods: A retrospective study was conducted on a cohort of 1379 COVID-19 patients who were discharged from Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine between 15 December 2022 and 15 February 2023. Patient symptoms, comorbidities, demographics, vital signs, and laboratory test results were systematically documented. The dataset was split into testing and training sets, and 15 different machine learning algorithms were employed to construct prediction models. These models were assessed for accuracy and area under the receiver operating characteristic curve (AUROC), and the best-performing model was selected for further analysis. Results: AUROC for models generated by 15 machine learning algorithms all exceeded 90%, and the accuracy of 10 of them also surpassed 90%. Light Gradient Boosting model emerged as the optimal choice, with accuracy of 0.928 ± 0.0006 and an AUROC of 0.976 ± 0.0028. Notably, the factors with the greatest impact on in-hospital mortality were growth stimulation expressed gene 2 (ST2,19.3%), interleukin-8 (IL-8,17.2%), interleukin-6 (IL-6,6.4%), age (6.1%), NT-proBNP (5.1%), interleukin-2 receptor (IL-2R, 5%), troponin I (TNI,4.6%), congestive heart failure (3.3%) in Light Gradient Boosting model. Conclusion: ST-2, IL-8, IL-6, NT-proBNP, IL-2R, TNI, age and congestive heart failure were significant predictors of in-hospital mortality among COVID-19 patients.

18.
Molecules ; 29(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38611748

Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated ß-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.


Exosomes , Mesenchymal Stem Cells , Humans , Fibroblasts , Aging , Collagen Type III , Umbilical Cord
19.
Shock ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38668801

OBJECTIVE: This study aimed to explore the impact of heat stress (HS) on glutamate transmission-dependent expression levels of interleukin-1ß (IL-1ß) and IL-18 in BV-2 microglial cells. METHODS: BV-2 microglial cells were cultured in vitro, with cells maintained at 37 °C serving as the control. The HS group experienced incubation at 40 °C for 1 h, followed by further culturing at 37 °C for 6 or 12 h. The experimental group was pre-incubated with glutamate, the glutamate antagonist riluzole, or the mGluR5 agonist, 2-Chloro-5-hydroxyphenylglycine (CHPG), before HS. Glutamate content in BV-2 culture supernatant was assessed using colorimetric assay. Moreover, mRNA expression levels of EAAT3 and/or mGluR5 in BV-2 cells were determined via quantitative polymerase chain reaction. Interleukins (IL-1ß and IL-18) in cell culture supernatant were measured using enzyme-linked immunosorbent assay. Western blot analysis was employed to assess protein levels of IL-1ß and IL-18 in BV-2 cells. RESULTS: HS induced a significant release of glutamate and increased the expression levels of mGluR5 and EAAT3 in BV-2 cells. It also triggered the expression levels and release of pro-inflammatory factors, such as IL-1ß and IL-18, synergizing with the effects of glutamate treatment. Preincubation with both riluzole and CHPG significantly reduced HS-induced glutamate release and mitigated the increased expression levels and release of IL-1ß and IL-18 induced by HS. CONCLUSION: The findings confirmed that microglia could be involved in HS primarily through glutamate metabolisms, influencing the expression levels and release of IL-1ß and IL-18.

20.
JMIR Mhealth Uhealth ; 12: e47012, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38623741

Background: In patients with gout, suboptimal management refers to a lack of disease knowledge, low treatment compliance, and inadequate control of serum uric acid (SUA) levels. Several studies have shown that continuous care is recommended for disease management in patients with gout. However, in China, the continuous care model commonly used for patients with gout requires significant labor and time costs, and its efficiency and coverage remain low. Mobile health (mHealth) may be able to address these issues. Objective: This study aimed to explore the impact of mHealth-based continuous care on improving gout knowledge and treatment compliance and reducing SUA levels. Methods: This study was a single-center, single-blind, and parallel-group randomized controlled trial. Participants were recruited at the West China Hospital of Sichuan University in Chengdu, China, between February 2021 and July 2021 and were randomly assigned to the intervention and control groups. The intervention group received continuous care via an mHealth app, which includes modules for health records, 24 weeks of gout-related health education materials, and interactive support. The control group received routine continuous care, including face-to-face health education, paper-based health education materials consistent with the content for the intervention group, and telephone consultations initiated by the patient. Follow-up was conducted at 6 months. Participants' gout knowledge levels and treatment compliance were measured at baseline and the 12th and 24th weeks, and participants' SUA levels were measured at baseline and the 24th week. The intention-to-treat principle and a generalized estimating equation model were used to test the effect of the intervention. Results: Overall, 258 potential participants underwent eligibility assessments, and 120 were recruited and randomized into the intervention (n=60, 50%) and control (n=60, 50%) groups. Of the 120 participants, 93 (77.5%) completed the 24-week study. The 2 groups had no significant differences in sociodemographic or clinical characteristics, and the baseline measurements were comparable (all P>.05). Compared with the control group, the intervention group exhibited a significant improvement in gout knowledge levels over time (ß=0.617, 95% CI 0.104-1.129; P=.02 and ß=1.300, 95% CI 0.669-1.931; P<.001 at the 12th and 24th weeks, respectively). There was no significant difference in treatment adherence between the 2 groups at the 12th week (ß=1.667, 95% CI -3.283 to 6.617; P=.51), while a statistical difference was observed at the 24th week (ß=6.287, 95% CI 1.357-11.216; P=.01). At the 24th week, SUA levels in both the intervention and control groups were below baseline, but there was no significant difference in SUA changes between the 2 groups (P=.43). Conclusions: Continuous care based on the mHealth app improved knowledge levels and treatment compliance among patients with gout. We suggest incorporating this intervention modality into standard continuous care for patients with gout.


Gout , Telemedicine , Humans , Uric Acid/therapeutic use , Single-Blind Method , Gout/therapy , Patient Compliance
...